Ecological Implications of Extreme Events: Footprints of the 2010 Earthquake along the Chilean Coast
نویسندگان
چکیده
Deciphering ecological effects of major catastrophic events such as earthquakes, tsunamis, volcanic eruptions, storms and fires, requires rapid interdisciplinary efforts often hampered by a lack of pre-event data. Using results of intertidal surveys conducted shortly before and immediately after Chile's 2010 M(w) 8.8 earthquake along the entire rupture zone (ca. 34-38°S), we provide the first quantification of earthquake and tsunami effects on sandy beach ecosystems. Our study incorporated anthropogenic coastal development as a key design factor. Ecological responses of beach ecosystems were strongly affected by the magnitude of land-level change. Subsidence along the northern rupture segment combined with tsunami-associated disturbance and drowned beaches. In contrast, along the co-seismically uplifted southern rupture, beaches widened and flattened increasing habitat availability. Post-event changes in abundance and distribution of mobile intertidal invertebrates were not uniform, varying with land-level change, tsunami height and coastal development. On beaches where subsidence occurred, intertidal zones and their associated species disappeared. On some beaches, uplift of rocky sub-tidal substrate eliminated low intertidal sand beach habitat for ecologically important species. On others, unexpected interactions of uplift with man-made coastal armouring included restoration of upper and mid-intertidal habitat seaward of armouring followed by rapid colonization of mobile crustaceans typical of these zones formerly excluded by constraints imposed by the armouring structures. Responses of coastal ecosystems to major earthquakes appear to vary strongly with land-level change, the mobility of the biota and shore type. Our results show that interactions of extreme events with human-altered shorelines can produce surprising ecological outcomes, and suggest these complex responses to landscape alteration can leave lasting footprints in coastal ecosystems.
منابع مشابه
Spatial and Seasonal Trend of Trace Metals and Ecological Risk Assessment along Kanyakumari Coastal Sediments, Southern India
The concentration of selected trace metals (Fe, Cd, Cu, Pb, and Zn) in 30surface sediments were measured using Atomic Absorption Spectrometer to investigatethe spatial and seasonal variations of trace metals along Kanyakumari coast, India. Toassess the environmental risk of trace metals, enrichment factor, geo-accumulation index,pollution load index, and ecological risk index have been calculat...
متن کاملSpatial and Seasonal Trend of Trace Metals and Ecological Risk Assessment along Kanyakumari Coastal Sediments, Southern India
The concentration of selected trace metals (Fe, Cd, Cu, Pb, and Zn) in 30surface sediments were measured using Atomic Absorption Spectrometer to investigatethe spatial and seasonal variations of trace metals along Kanyakumari coast, India. Toassess the environmental risk of trace metals, enrichment factor, geo-accumulation index,pollution load index, and ecological risk index have been calculat...
متن کاملSpatial and Temporal Clustering Analysis of Extreme Wave Events around the UK Coastline
Densely populated coastal regions are vulnerable to extreme wave events, which can cause loss of life and considerable damage to coastal infrastructure and ecological assets. Here, an event-based analysis approach, across multiple sites, has been used to assess the spatial footprint and temporal clustering of extreme storm-wave events around the coast of the United Kingdom (UK). The correlated ...
متن کاملThe role of environments with extreme ecological conditions in the reductive evolutionary development processes of animal
Different groups of animals show phenotypic characters, which have been resulted by the reductive phenomena. The examples are the absence of pigmentation; dwindle of eyes in some cave-living animals, and also the absence of scale in some fishes. These characters are often leaded to evolution of new species with special adaptation that is so called "Regressive evolution". The reductive phenomena...
متن کاملLand-level changes produced by the Mw 8.8 2010 Chilean earthquake.
We observed vertically displaced coastal and river markers after the 27 February 2010 Chilean earthquake [moment magnitude (Mw) 8.8]. Land-level changes range between 2.5 and -1 meters, evident along an approximately 500-kilometers-long segment identified here as the maximum length of coseismic rupture. A hinge line located 120 kilometers from the trench separates uplifted areas, to the west, f...
متن کامل